This paper details our early reflections as Human-Computer Interaction (HCI) practitioners working on an interdisciplinary project to redesign and resituate a fire information system for wider community use. We are part of a team at Edith Cowan University collaborating with Landgate, the department of land information in Western Australia, on a project that is funded by an ARC Linkage Grant. FireWatch was originally created by Landgate to provide members of emergency services organisations and government departments with information on fire locations in Western Australia. While this website provides a high level and amount of technical information, it suffers from its history of being focused solely on the needs of technical users. Therefore, the main purpose of the project is to redesign the FireWatch website to accommodate members of the wider community, particularly in rural areas. There are two major aspects to the project. First, the developers/designers' perspective on redesigning the website to be user-centred with a strong focus on empathic design. Second, the project is concerned with how rural communities prepare and respond to fire threats.

One of the key objectives of our redesign is to make it usable and accessible to members of the general public – specifically those situated in a rural setting. The focus on a rural site in the far north of Australia is due to both the size and frequency of bushfires in this area. A technical limitation of the satellite data means that only fires larger than 1 kilometre in diameter will be shown by FireWatch, and most of these fires are situated in the far north of Australia. Involvement of potential users is crucial to tailor the website to be appropriate for the users. However, due to the timing of the two halves of the project, we have not been able to engage directly with potential users. In this project, we are reliant on a research officer from the community half of the project conducting ethnographic work within a remote community. Due to its location and sizeable population, Kununurra has been chosen as the trial site. The role of the research officer is to establish key contacts in the Kununurra community and act as a mediator-user in this project. We will then approach members of this community to trial the prototype website and conduct interviews based on their experience with the website and map-based interfaces generally. The ethnographic work will commence several months after we were due to commence prototyping. Therefore, we have had to find a way to bridge the gap between starting the design, and, when we are able, to gain significant input directly from our future real-world users.

Users are the cornerstones of every product that designers build and this view is shared throughout the field of HCI (e.g., Norman, 2004; Nielsen, 1994). By reason of this emphasis on user-centred design in HCI, we consider it essential that a design is built with its users as the most important focus and that, ideally, their input should be sought from the beginning (Carroll, 1997; Garcia *et al.*, 2010). User-centred design aims to include users (directly and indirectly) from the outset, as it allows designers to make informed decisions – based on a better understanding of users' actions and how and why they perform actions (Lanfranchi and Ireson, 2009, p.199). As described above, the circumstances of this project, including the remote user base, the later deployment of the research officer and other contributing time constraints, mean that direct input from users is not feasible until after initial prototyping has begun. To address this, scenario-based design and development of a prototype interface.

Scenario-based design is an HCI methodology for considering the needs of potential users, without their direct input (Carroll & Rosson, 2002). Scenario-based design gives the interface designer the ability to create contextualised scenarios of use, along with postulations on the various types of users and their needs, expressed in the form of personas (Grudin & Pruitt, 2002). Scenario-based design is particularly useful in the initial phase of a project where exploration and discussion of contents, users' needs and requirements are encouraged among designers. The main benefit of scenario-based design is the development of rich, indepth, and realistic stories explained in a natural way explaining potential users and their likely experiences (e.g. situations, settings, emotional states, etc.). By 'walking through' informal narrative descriptions in the form of a story, scenario-based design focuses on the human activities undertaken by users rather than the technology itself (Sharp, Rogers & Preece, 2006). It explains why people do the things as they do and what they are trying to achieve. Scenarios and personas can be powerful communication mechanisms, especially when real world issues preclude the direct involvement of users at a critical stage, which is the case with the FireWatch project. In this instance, scenario-based design is acting as:

- A bridge to "fill the gap" in our collaborative project, where, due to circumstances beyond our control, vital information from users is unavailable to us before the prototyping stage;
- A catalyst to "kick-start" the project to compensate for the lack of direct contact with users; and

• A brain-storming communication tool among designers to "tease out" and establish requirements for the redesigned website.

Based on the scenario-based framework of Rosson and Carroll (2002, p.25), the following table has been created to document the requirements of our FireWatch scenario of use:

Requirement	Description					
Root concept	The existing public access website at					
	http://firewatch.landgate.wa.gov.au/ is the starting point. The					
	initial objective is to try and improve the usability of the curren					
	site, catering for members of the general public and catering					
	for cross-browser and cross-device compatibility.					
Field studies	The initial design will be conducted prior to real-world studies					
	(in the form of a survey and semi-structured interview), hence					
	the need for a scenario-based approach. This scenario, and					
	the personas involved, will be based on information provided					
	by Landgate staff and information from the NAFI project.					
Summaries	The initial task will be to improve the usability of the current					
	public access version of FireWatch. Further iterations, which					
	will involve real world users, will focus on both usability and					
	functionality while ensuring to meet the needs of users.					
Problem scenarios	Problems will be addressed as they arise. This is likely to					
	happen after feedback has been received from users through					
	the survey and semi-structured interview.					
Claims analysis	As discussed previously, this research will combine theory					
	from HCI, web best practices (including flexible grid design),					
	visual rhetoric and findings from the NAFI website.					

To enable designers to create useful scenarios, Rosson and Carroll (2002, p.18) created a table of elements characteristic of interaction scenarios. These elements are described within the context of FireWatch below.

Scenario element	Definition	FireWatch scenario		
Setting	Situational details that motivate	The goal of this redesign is to		
	or explain goals, actions and	improve the usability and		
	reactions of users	functionality of the public		
		access version of the		
		FireWatch system, allowing for		
		it to be easily adopted by the		
		wider community.		
Actors	People interacting with the	There will be various types of		
	computer interface – personal	users interacting with		
	characteristics relevant to the	FireWatch: these will include		
	scenario	pastoralists, local council		
		representatives, indigenous		
		landowners and members of		
		community organisations.		
		Personas will be used to		
		describe each type of user in		
		detail, along with their reasons		
		for using the interface and their		
		technical experience and		
		limitations.		
Task goals	Effects on the station that	The task goal will be for users		
	motivate the actions of actors	to easily locate bushfire threats		
		near their location, allowing		
		them to make informed choices		
		about how to respond to these		
		bushfire threats.		
Plans	Mental activity directed at	Users will be able to easily pan		
	converting a goal into a	to the desired location and		
	behavior	zoom to a reasonable level to		
		allow them to view threats in		
		their vicinity. It will also easily		
		allow them to select the type of		
		information layers that they		
		desire.		

Evaluation	Interpreting features of the	Evaluation will be carried out
	situation	after feedback from users has
		been obtained.
Actions	Observable behavior	User actions will be determined
		by feedback from users,
		information from Google
		Analytics and observations
		from the community side of the
		project.
Events	Actions or reactions produced	Actions will include zooming
	by the computer, which may	and panning the map, allowing
	not be visible to the actor but	users to select layers of
	relevant to the scenario	information and refreshing the
		map. Future events (i.e.,
		functionality) may be added or
		removed, as required, based
		on feedback from users.

These elements describe a scenario where various types of users are engaging with the FireWatch interface, with the goal of informing them of fire threats in their vicinity. Distinct personas have been created to address the various types of users (actors) that may be encountered throughout the duration of the FireWatch project. These personas are based off information from Landgate, the research officer's prior experience in rural communities and previous research from the North Australian Fire Information (NAFI) project (Tropical Savannas CRC, 2012). At this stage, the distinct personas can be classified as a pastoralist, a local police officer, a volunteer of a community organisation, an indigenous landowner, a local tourist operator and a local community organisation leader. These personas will be explained in more detail as the project evolves, but as an initial starting point, we have created the following table, articulating useful characteristics about each persona. It also envisages the technical devices that these personas use on a daily basis:

Persona	Pastoralist	Local police	Indigenous	Local	Local	Tourist
type		officer	land	community	volunteer	operator
			manager	representative		,
Overview	A livestock	Local figure	Act as	Leader of the	Local	Owns
	farmer, who	of authority.	traditional	Kununurra	community	and/or runs
	may also	Has ties to	custodians	branch of an	member who	a local
	grow crops.	many	of the land.	organisation	volunteers	tourism
		organisations	Indigenous	such as the	for an	company.
		and	people have	CWA or	emergency	Would know
		government	a deep	Rotary Club.	organisation,	many
		departments	cultural and		such as	people in
		in the area.	spiritual		Kununurra	several
			connection		Volunteer	industries
			to the land.		Fire &	and about
					Rescue.	local
						events.
Computer	Has a low	Moderate	Moderate	Moderate	Low-	Moderate-
Skills,	level of	level of	level of	level of	moderate	high level of
Knowledge,	computer	computer	computer	computer	level of	computer
and Abilities	skills.	skills. Used	skills. May	skills –	computer	skills.
		to using	be familiar	familiar with	skills. Uses	Frequently
		email, the	with NAFI	Office	internet and	uses email
		internet and	website.	software,	email.	and
		Microsoft		email and		internet,
		Office		internet.		and
		software.				administers
						own
						website.
Internet-	Home	Work	Work	Work	Work	Work
enabled	computer.	computer,	computer	computer,	computer,	computer,
devices		home	and smart	home	home	tablet
		computer	phone.	computer.	computer.	device
		and smart				(iPad) and

		phone.				smart
						phone.
Expectations	Intends to	Intends to	Intends to	Intends to use	Intends to	Intends to
of FireWatch	use it to plan	use	use	FireWatch	use	use
	for fire	FireWatch to	FireWatch	primarily as a	FireWatch to	FireWatch
	threats and	assist in the	primarily as	planning tool.	assist in the	to assist in
	in the	preparation	a planning		preparation	the
	instance of	of fire	tool.		of fire	preparation
	emergencies	response			response	of fire
	close in the	plans. Also			plans. Also	response
	vicinity.	may use it as			may use it as	plans.
		an			an	
		information			information	
		source in an			source in an	
		emergency			emergency	
		response			response	
		situation.			situation.	
Experience	Has some	ls familiar	Knows	Is familiar with	ls familiar	ls familiar
with map	familiarity	with Google	NAFI,	Google Maps.	with NAFI	with NAFI,
websites	with NAFI	Maps and	Sentinel		and Google	Google
	and the	Bureau of	and the		Maps.	Maps and
	Bureau of	Meteorology	Bureau of			the Bureau
	Meteorology	website.	Meteorology			of
	website.		website			Meteorology
			well.			website.
A	The	The police	The	The local	The local	The tourist
description	pastoralist	officer will	indigenous	community	volunteer will	operator will
of how the	will use	use	land	representative	use	use
user will	FireWatch to	FireWatch to	manager	will use	FireWatch to	FireWatch
engage with	monitor fire	monitor fires	will use	FireWatch to	monitor fires	to monitor
FireWatch	threats close	around the	FireWatch	monitor fires	around the	fire threats
	to the	wider	to monitor	around the	greater	close to the
	boundary of	Kununurra	fires around	greater	Kununurra	boundary of
	his or her	area. They	the greater	Kununurra	area. They	known
	property.	will use the	Kununurra	area. They	will use the	tourist

They	y will search	n area. They	will use the	search	attractions
likely	know function	to will likely	search	function to	and to
the lor	ngitude zoom to v	view search	function to	zoom to view	check if any
and la	atitude the enti	re using the	zoom to view	the entire	fires are
of t	heir town ar	nd town name	the entire	town and	near roads.
prop	erty, surround	ling to view fires	town and	surrounding	They may
and w	rill use areas. V	Vill in the	surrounding	areas. In	know the
this to	zoom also wan	t to vicinity. Due	areas. Will	particular, as	longitude
into vie	ew the view	to previous	also want to	a volunteer	and latitude
area a	around previous	fires experience	view previous	of an	of tourist
the	eir to assist	t in with NAFI	fires to assist	emergency	attractions,
prop	erty. planning	for and	in planning for	organisation,	and will use
	emergeno	cies. Sentinel,	emergencies.	they will also	this feature
		the		want to view	to zoom into
		indigenous		previous fires	view the
		land		to assist in	areas of
		manager		planning for	interest.
		has higher		emergencies.	
		technical			
		capability			
		than other			
		users.			

Documenting these characteristics for six personas has enabled us to commence a prototype design to meet the needs of these users. Based on the information above, we know that the interface will need to work across multiple devices, including smart phones and tablets. We can also presume that various users may want to search for their location by the name of their town, while others will use longitude and latitude coordinates. We also know that our users have varying degrees of technical ability. To deal with this, we are initially building the prototype to be very easy to use, with a minimal design and simple functionality. Ease of use is also critical in potentially stressful situations (Lanfranchi & Ireson, 2009). Although FireWatch is not intended to act as an alert system, it may still be used in potentially stressful situations, so ease of use will be a key objective of the interface.

Another benefit of using scenario-based design is that it enables designers to easily relate to users, and users' feelings are observed as they immerse themselves into stories they explore and create (i.e., empathic design). This is particularly important in the FireWatch project, as the information being delivered may be of a potential emergency situation. Also, more personas may be added to the list as we deal directly with real-world users further into the project. The fact that scenario-based design allows us to create concrete scenarios, while allowing them to be flexible and evolve as the project progresses, is one of the advantages that we have discovered in incorporating it into our methodology. Personas also provide a practical framework for presenting data collected through other methods (Grudin & Pruitt, 2002). In the context of our research, data will be collected from real-world users through an online questionnaire and semi-structured interviews. This data will be used to expand on and more realistically inform our personas and scenarios.

While different disciplines utilise proprietary project management methods, scenario-based design also bridges gaps between practice-specific epistemologies, allowing contributions from different fields to feed the project at any stage of its progress. This is particularly useful in a project such as ours, where a large number of stakeholders are involved sharing different expectations. Scenarios provide an interface designer with a method of considering the various stakeholders in a project, including end-users. This allows for the designer to consider details of how users might approach a system and the implications of this for the interface design. These scenario descriptions are written using universally accessible language, which also allow for non-technical users and other parties to gain an understanding of the functionality of an interface without being over-burdened by technical information. This universality facilitates participatory design, by allowing for input from all of the interested parties (Carroll & Rosson, 2002). A scenario-based approach to outline a project scope enables stakeholders to unify their understanding of the project by articulating the situations in which the interface will be used. This has enabled us to commence a prototype that would otherwise have been postponed for several months while awaiting input from real-world users.

Acknowledgements

We would like thank our ARC team colleagues Dr Danielle Brady, Dr Barnard Clarkson, Professor Lelia Green, Dr Donell Holloway and our industry partners at Satellite Remote Sensing Services, Landgate. We acknowledge and are grateful for Australian Research Council funding for this research.

Bibliography

- CARROL, J.M. (1997) Human-Computer Interaction: Psychology as a Science of Design, *Int. J. Hum.-Comput. Stud*, 46(4): 501-522.
- CARROLL, J.M., ROSSON, M.B., GEORGE CHIN, J & KOENEMANN, J. (1988) Requirements Development in Scenario-Based Design, *IEEE Trans. Softw. Eng.*, 24(12): 1156-1170.
- GARCIA, R., GIMENO, J.M., PERDRIX, F., GIL, R., OLIVA, M., LOPEZ, J.M. & SEND, M.
 (2010) Building a Usable and Accessible Semantic Web Interaction Platform, *World Wide Web*, 13(1-2): 143-167.
- GRUDIN, J. & PRIUTT, J. (2002) Personas, Participatory Design and Product Development: An Infrastructure for Engagement. Paper presented at the Proceedings of Participation and Design Conference (PDC2002), Sweden.

http://www.itee.uq.edu.au/~comp4501/_2003/_Readings/GrudinPersonas.pdf

LANFRANCHI, V. & IRESON, N. (2009) User Requirements for a Collective Intelligence Emergency Response System. Paper presented at the Proceedings of the 23rd British HCI Group Annual Conference on People and Computers: Celebrating People and Technology, Cambridge, United Kingdom.

NIELSEN, J. (1994) Usability engineering, San Diego: AP Professional.

- NORMAN, D.A. (2004) *Emotional design: Why We Love (or Hate) Everyday Things*, New York: Basic Books.
- SHAPR, H., ROGERS, Y. & PREECE, J. (2006) *Interaction Design: Beyond Human-Computer Interaction* (2nd ed.), Barcelona, Spain: John Wiley & Sons.

Tropical Savannas CRC. (2012) *The North Australian Fire Information Website*, http://savanna.cdu.edu.au/savanna_web/information/downloads/NAFI-Doco.pdf